Detection and Classification of Anomalies in Network Traffic Using Generalized Entropies and OC-SVM with Mahalanobis Kernel

نویسندگان

  • Jayro Santiago-Paz
  • Deni Torres-Roman
  • Angel Figueroa-Ypiña
چکیده

Network anomaly detection and classification is an important open issue of network security. Several approaches and systems based on different mathematical tools have been studied and developed. Among them, the Anomaly-Network Intrusion Detection System (A-NIDS), this monitors network traffic and compares it against an established baseline of “normal” traffic profile. Then, it is necessary to characterize the “normal” Internet traffic. This paper presents an approach for anomaly detection and classification based on: the entropy of selected features (including Shannon, Renyi and Tsallis entropies), the construction of regions from entropy data employing the Mahalanobis distance (MD), and One Class Support Vector Machine (OC-SVM) with different kernels (RBF and particularity Mahalanobis) for “normal” and abnormal traffic. Regular and non-regular regions built from “normal” traffic profiles, allow the anomaly detection; whilst the classification is performed under the assumption that regions corresponding to the attack classes have been characterized previously. Although, this approach allows the use of as many features as required, only four well known significant features were selected in our case. To evaluate our approach two different data sets were used: one set of real traffic obtained from an Academic LAN, and the other a subset of the 1998 MIT-DARPA set. The selected features sets computed in our experiments provide detection rates up to 99.90% with “normal” traffic and up to 99.83% with anomalous traffic and false alarm rate of 0.086%. Experimental results show that certain values of the q parameter of the generalized entropies and the use of OC-SVM improves the detection rate of some attack classes, due to a better fit of the region to the data. Besides, our results show that MD allows to obtain high detection rates with an efficient computation time, while OC-SVM achieved detection rates slightly higher but more expensive computationally.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using Generalized Entropies and OC-SVM with Mahalanobis Kernel for Detection and Classification of Anomalies in Network Traffic

Network anomaly detection and classification is an important open issue in network security. Several approaches and systems based on different mathematical tools have been studied and developed, among them, the Anomaly-Network Intrusion Detection System (A-NIDS), which monitors network traffic and compares it against an established baseline of a “normal” traffic profile. Then, it is necessary t...

متن کامل

SUBCLASS FUZZY-SVM CLASSIFIER AS AN EFFICIENT METHOD TO ENHANCE THE MASS DETECTION IN MAMMOGRAMS

This paper is concerned with the development of a novel classifier for automatic mass detection of mammograms, based on contourlet feature extraction in conjunction with statistical and fuzzy classifiers. In this method, mammograms are segmented into regions of interest (ROI) in order to extract features including geometrical and contourlet coefficients. The extracted features benefit from...

متن کامل

Impact of Patients’ Gender on Parkinson’s disease using Classification Algorithms

In this paper the accuracy of two machine learning algorithms including SVM and Bayesian Network are investigated as two important algorithms in diagnosis of Parkinson’s disease. We use Parkinson's disease data in the University of California, Irvine (UCI). In order to optimize the SVM algorithm, different kernel functions and C parameters have been used and our results show that SVM with C par...

متن کامل

Anomaly Detection Using SVM as Classifier and Decision Tree for Optimizing Feature Vectors

Abstract- With the advancement and development of computer network technologies, the way for intruders has become smoother; therefore, to detect threats and attacks, the importance of intrusion detection systems (IDS) as one of the key elements of security is increasing. One of the challenges of intrusion detection systems is managing of the large amount of network traffic features. Removing un...

متن کامل

Epileptic Seizure Detection in EEG signals Using TQWT and SVM-GOA Classifier

Background: Epilepsy is a Brain disorder disease that affects people's quality of life. If it is diagnosed at an early stage, it will not be spread. Electroencephalography (EEG) signals are used to diagnose epileptic seizures. However, this screening system cannot diagnose epileptic seizure states precisely. Nevertheless, with the help of computer-aided diagnosis systems (CADS), neurologists ca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014